Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Intra-vascular blood velocity and volumetric flow rate calculated from dynamic 4D CT angiography using a time of flight technique.

We examine a time of flight (TOF) approach for the analysis of contrast enhanced 4D volumetric CT angiography scans to derive and display blood velocity in arteries. Software was written to divide blood vessels into a series of cross sections and to track contrast bolus TOF along the central vessel axis, which was defined by a user, from 4D CT source data. Time density curves at each vessel cross section were fit with quadratic, Gaussian, and gamma variate functions to determine bolus time to peak (TTP). A straight line was used to plot TTP versus vessel path length for all three functions and the slope used to calculate intraluminal velocity. Software was validated in a simulated square channel and non-pulsatile flow phantom prior to the calculation of blood velocity in the major cerebral arteries of 8 normal patients. The TOF algorithm correctly calculates intra-luminal fluid velocity in eight flow conditions of the CT flow phantom where quadratic functions were used. Across all conditions, in phantoms and in vivo, the success of calculations depended strongly on having a sufficiently long path length to make measurements and avoiding venous contamination. Total blood flow into the brain was approximately 17 % of a normal 5 L cardiac output. The technique was explored in vivo in a patient with subclavian steal syndrome, in the pulmonary arteries and in the iliac artery from clinical 4D CT source data. Intravascular blood velocity and flow may be calculated from 4D CT angiography using a TOF approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app