Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypophosphatemic rickets caused by a novel splice donor site mutation and activation of two cryptic splice donor sites in the PHEX gene.

X-linked hypophosphatemic rickets (XLH) is the most common inherited form of rickets. XLH is caused by inactivating mutations in the PHEX gene and is transmitted as an X-linked dominant disorder. We investigated PHEX mutation in a sporadic Turkish girl with hypophosphatemic rickets. The patient was 2 years of age with a complaint of inability to walk. She had bowing of legs and growth retardation. Laboratory data showed normal calcium, low phosphate with markedly elevated ALP, and low phosphate renal tubular reabsorption. She was treated with Calcitriol 0.5 mg/kg/day and oral phosphate supplement with good response. The entire coding region of PHEX gene was sequenced from patient's peripheral leukocyte DNA and a novel 13 bp deletion at the donor splice site of exon5 was found (c.663+12del). Instead of using the donor splice site of intron 4 to splice out exon 5 and intron 5, the spliceosome utilized two nearby cryptic donor splice sites (5' splice site) to splice out intron 4, resulting in two smaller transcripts. Both of them could not translate into functional proteins due to frameshift. Her parents did not carry the mutation, indicating that this is a de novo PHEX mutation likely resulting from mutagenesis of X chromosome in paternal germ cells. We conclude that c.663+12del is a novel mutation that can activate nearby cryptic 5' splice sites. The selection of cryptic 5' splice sites adds the complexity of cell's splicing mechanisms. The current study extends the database of PHEX mutation and cryptic 5' splice sites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app