JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Aberrant connexin26 hemichannels underlying keratitis-ichthyosis-deafness syndrome are potently inhibited by mefloquine.

Keratitis-ichthyosis-deafness (KID) syndrome is an ectodermal dysplasia caused by dominant mutations of connexin26 (Cx26). Loss of Cx26 function causes nonsyndromic sensorineural deafness, without consequence in the epidermis. Functional analyses have revealed that a majority of KID-causing mutations confer a novel expansion of hemichannel activity, mediated by connexin channels in a nonjunctional configuration. Inappropriate Cx26 hemichannel opening is hypothesized to compromise keratinocyte integrity and epidermal homeostasis. Pharmacological modulators of Cx26 are needed to assess the pathomechanistic involvement of hemichannels in the development of hyperkeratosis in KID syndrome. We have used electrophysiological assays to evaluate small-molecule analogs of quinine for suppressive effects on aberrant hemichannel currents elicited by KID mutations. Here, we show that mefloquine (MFQ) inhibits several mutant hemichannel forms implicated in KID syndrome when expressed in Xenopus laevis oocytes (IC50∼16 μM), using an extracellular divalent cation, zinc (Zn(++)), as a nonspecific positive control for comparison (IC50∼3 μM). Furthermore, we used freshly isolated transgenic keratinocytes to show that micromolar concentrations of MFQ attenuated increased macroscopic membrane currents in primary mouse keratinocytes expressing human Cx26-G45E, a mutation that causes a lethal form of KID syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app