CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Paramagnetic signals in the globus pallidus as late radiographic sign of juvenile-onset GM1 gangliosidosis.

Pediatric Neurology 2015 Februrary
BACKGROUND: The juvenile form of GM1 gangliosidosis lacks specific physical findings and thus is often a diagnostic challenge for clinicians. T2 hypodensity in the globus pallidus is a characteristic radiographic sign of neurodegeneration with iron accumulation in the brain that is observed in GM1 gangliosidosis, but the exact timing when this radiographic sign becomes apparent remains to be elucidated.

PATIENTS: Two male siblings had normal development until 2 years of age and then developed psychomotor regression with dystonia. Their neuroimaging studies indicated progressive global cerebral atrophy. Exome sequencing identified compound heterozygous missense mutations in GLB1, leading to a diagnosis of GM1 gangliosidosis.

RESULTS: A retrospective review of neuroimaging studies revealed that the two patients had strikingly similar clinical courses and radiographic progressions with cortical atrophy that preceded the T2 hypointensity in the globus pallidus.

CONCLUSIONS: Paramagnetic signals in the globus pallidus become apparent relatively late during the disease course, once cerebral atrophy has already become prominent. A comprehensive diagnostic approach involving clinical, radiographic, and genetic testing is necessary for the early identification of affected individuals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app