Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative and qualitative adaptations of muscle fibers to glucocorticoids.

Muscle & Nerve 2015 October
INTRODUCTION: The aim of this study was to understand the effects of short-term glucocorticoid administration in healthy subjects.

METHODS: Five healthy men received dexamethasone (8 mg/day) for 7 days. Vastus lateralis muscle biopsy and knee extension torque measurement were performed before and after administration. A large number of individual muscle fibers were dissected from the biopsy samples (pre-administration: n = 165, post-administration: n = 177).

RESULTS: Maximal knee extension torque increased after administration (∼ 13%), whereas both type 1 and type 2A fibers had decreased cross-sectional area (type 1: ∼ 11%, type 2A: ∼ 17%), myosin loss (type 1: ∼ 18%, type 2A: ∼ 32%), and loss of specific force (type 1: ∼ 24%, type 2A: ∼ 33%), which were preferential for fast fibers.

CONCLUSION: Short-term dexamethasone administration in healthy subjects elicits quantitative and qualitative adaptations of muscle fibers that precede (and may predict) the clinical appearance of myopathy in glucocorticoid-treated subjects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app