Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Echo time dependence of observed T1 in the human lung.

BACKGROUND: This work is intended to demonstrate that T1 measured in the lungs depends on the echo time (TE) used. Measuring lung T1 can be used to gain quantitative morphological and functional information. It is also shown that this dependence is particularly visible when using an ultra-short TE (UTE) sequence with TE well below 1 ms for T1 quantification in lung tissue, rather than techniques with TE on the order of 1-2 ms.

METHODS: The lungs of 12 healthy volunteers (aged 22 to 33 years) were examined at 1.5 Tesla. A segmented inversion recovery Look-Locker multi-echo sequence based on two-dimensional UTE was used for independent T1 quantification at five TEs between TE1  = 70 μs and TE5  = 2.3 ms.

RESULTS: The measured T1 was found to increase gradually with TE from 1060 ± 40 ms at TE1 to 1389 ± 53 ms at TE5 (P < 0.001).

CONCLUSION: Measuring T1 at ultra-short echo times reveals a significant dependence of observed T1 on the echo time. Thus, any comparison of T1 values should also consider the TEs used. However, this dependence on TE could also be exploited to gain additional diagnostic information on the tissue compartments in the lung.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app