JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria.

Primary hyperoxaluria (PH) is a rare autosomal recessive disease characterized by oxalate accumulation in the kidneys and other organs. Three loci have been identified: AGXT (PH1), GRHPR (PH2), and HOGA1 (PH3). Here, we compared genotype to phenotype in 355 patients in the Rare Kidney Stone Consortium PH registry and calculated prevalence using publicly available whole-exome data. PH1 (68.4% of families) was the most severe PH type, whereas PH3 (11.0% of families) showed the slowest decline in renal function but the earliest symptoms. A group of patients with disease progression similar to that of PH3, but for whom no mutation was detected (11.3% of families), suggested further genetic heterogeneity. We confirmed that the AGXT p.G170R mistargeting allele resulted in a milder PH1 phenotype; however, other potential AGXT mistargeting alleles caused more severe (fully penetrant) disease. We identified the first PH3 patient with ESRD; a homozygote for two linked, novel missense mutations. Population analysis suggested that PH is an order of magnitude more common than determined from clinical cohorts (prevalence, approximately 1:58,000; carrier frequency, approximately 1:70). We estimated PH to be approximately three times less prevalent among African Americans than among European Americans because of a limited number of common European origin alleles. PH3 was predicted to be as prevalent as PH1 and twice as common as PH2, indicating that PH3 (and PH2) cases are underdiagnosed and/or incompletely penetrant. These results highlight a role for molecular analyses in PH diagnostics and prognostics and suggest that wider analysis of the idiopathic stone-forming population may be beneficial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app