ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Development of a therapeutic agent for Menkes disease: solubilization of a copper-disulfiram complex].

Menkes disease (MD) is a neurodegenerative disorder characterized by copper deficiency. It is caused by defective intestinal absorption of copper resulting from a deficiency of a copper-transporting ATPase, ATP7A. We investigated the effects of combination therapy with copper and disulfiram, a known lipophilic chelator. We synthesized a copper-disulfiram complex (Cu-DSF) and determined its crystal structure by X-ray crystallographic analysis. Unfortunately, Cu-DSF was not orally bioavailable due to its lipophilicity. We therefore planned to use cyclodextrin as a solubilizing agent to increase the water solubility of Cu-DSF. After comparisons of the effects of cyclodextrins (α, β, γ), it was found that addition of β-cyclodextrin (β-CyD) increased the solubility of Cu-DSF. Moreover, the modified β-CyD, hydroxypropyl-β-cyclodextrin, was yet more effective as a solubilizing agent. For the development of a convenient method to determine the concentration of Cu-DSF included by β-cyclodextrins, a standard curve based on UV-visible(VIS) absorption was derived.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app