Add like
Add dislike
Add to saved papers

Averaging methods for extracting representative waveforms from motor unit action potential trains.

In the context of quantitative electromyography (EMG), it is of major interest to obtain a waveform that faithfully represents the set of potentials that constitute a motor unit action potential (MUAP) train. From this waveform, various parameters can be determined in order to characterize the MUAP for diagnostic analysis. The aim of this work was to conduct a thorough, in-depth review, evaluation and comparison of state-of-the-art methods for composing waveforms representative of MUAP trains. We evaluated nine averaging methods: Ensemble (EA), Median (MA), Weighted (WA), Five-closest (FCA), MultiMUP (MMA), Split-sweep median (SSMA), Sorted (SA), Trimmed (TA) and Robust (RA) in terms of three general-purpose signal processing figures of merit (SPMF) and seven clinically-used MUAP waveform parameters (MWP). The convergence rate of the methods was assessed as the number of potentials per MUAP train (NPM) required to reach a level of performance that was not significantly improved by increasing this number. Test material comprised 78 MUAP trains obtained from the tibialis anterioris of seven healthy subjects. Error measurements related to all SPMF and MWP parameters except MUAP amplitude descended asymptotically with increasing NPM for all methods. MUAP amplitude showed a consistent bias (around 4% for EA and SA and 1-2% for the rest). MA, TA and SSMA had the lowest SPMF and MWP error figures. Therefore, these methods most accurately preserve and represent MUAP physiological information of utility in clinical medical practice. The other methods, particularly WA, performed noticeably worse. Convergence rate was similar for all methods, with NPM values averaged among the nine methods, which ranged from 10 to 40, depending on the waveform parameter evaluated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app