JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Childhood asthma is associated with mutations and gene expression differences of ORMDL genes that can interact.

Allergy 2015 October
BACKGROUND: Genomewide association studies identified ORMDL3 as a plausible asthma candidate gene. ORMDL proteins regulate sphingolipid metabolism and ceramide homeostasis and participate in lymphocyte activation and eosinophil recruitment. Strong sequence homology between the three ORMDL genes and ORMDL protein conservation among different species suggest that they may have shared functions. We hypothesized that if single nucleotide polymorphisms (SNPs) in ORMDL3 alter its gene expression and play a role in asthma, variants in ORMDL1 and ORMDL2 might also be associated with asthma.

METHODS: Asthma associations of 44 genotyped SNPs were determined in at least 1303 subjects (651 asthmatics). ORMDL expression was evaluated in peripheral blood mononuclear cells (PBMC) from 55 subjects (eight asthmatics) before and after allergen stimulation, and in blood (n = 60, 5 asthmatics). Allele-specific cis-effects on ORMDL expression were assessed. Interactions between human ORMDL proteins were determined in living cells.

RESULTS: Sixteen SNPs in all three ORMDLs were associated with asthma (14 in ORMDL3). Baseline expression of ORMDL1 (P = 1.7 × 10(-6) ) and ORMDL2 (P = 4.9 × 10(-5) ) was significantly higher in PBMC from asthmatics, while induction of ORMDLs upon stimulation was stronger in nonasthmatics. Disease-associated alleles (rs8079416, rs4795405, rs3902920) alter ORMDL3 expression. ORMDL proteins formed homo- and heterooligomers and displayed similar patterns of interaction with SERCA2 and SPT1.

CONCLUSIONS: Polymorphisms in ORMDL genes are associated with asthma. Asthmatics exhibit increased ORMDL levels, suggesting that ORMDLs contribute to asthma. Formation of heterooligomers and similar interaction patterns with proteins involved in calcium homeostasis and sphingolipid metabolism could indicate shared biological roles of ORMDLs, influencing airway remodeling and hyperresponsiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app