Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants.

Otology & Neurotology 2015 September
HYPOTHESIS: Intracochlear sound pressures (PIC) and velocity measurements of the stapes, round window, and promontory (VStap/RW/Prom) will show frequency-dependent attenuation using magnet-based transcutaneous bone conduction implants (TCBCIs) in comparison with direct-connect skin-penetrating implants (DCBCIs).

BACKGROUND: TCBCIs have recently been introduced as alternatives to DCBCIs. Clinical studies have demonstrated elevated high-frequency thresholds for TCBCIs as compared with DCBCIs; however, little data exist examining the direct effect of skin thickness on the cochlear input signal using TCBCIs.

METHODS: Using seven cadaveric heads, PIC was measured in the scala vestibuli and tympani with fiber-optic pressure sensors concurrently with VStap/RW/Prom via laser Doppler vibrometry. Ipsilateral titanium implant fixtures were placed and connected to either a DCBCI or a TCBCI. Soft tissue flaps with varying thicknesses (no flap and 3, 6, and 9 mm) were placed successively between the magnetic plate and sound processor magnet. A bone conduction transducer coupled to custom software provided pure-tone stimuli between 120 and 10,240 Hz.

RESULTS: Stimulation via the DCBCI produced the largest response magnitudes. The TCBCI showed similar PSV/ST and VStap/RW/Prom with no intervening flap and a frequency-dependent nonlinear reduction of magnitude with increasing flap thickness. Phase shows a comparable dependence on transmission delay as the acoustic baseline, and the slope steepens at higher frequencies as flap thickness increases, suggesting a longer group delay.

CONCLUSION: Proper soft tissue management is critical to optimize the cochlear input signal. The skin thickness-related effects on cochlear response magnitudes should be taken into account when selecting patients for a TCBCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app