JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Pathophysiology of inner ear decompression sickness: potential role of the persistent foramen ovale.

Inner-ear decompression sickness (inner ear DCS) may occur in isolation ('pure' inner-ear DCS), or as part of a multisystem DCS presentation. Symptoms may develop during decompression from deep, mixed-gas dives or after surfacing from recreational air dives. Modelling of inner-ear inert gas kinetics suggests that onset during decompression results from supersaturation of the inner-ear tissue and in-situ bubble formation. This supersaturation may be augmented by inert gas counterdiffusion following helium to nitrogen gas switches, but such switches are unlikely, of themselves, to precipitate inner-ear DCS. Presentations after surfacing from air dives are frequently the 'pure' form of inner ear DCS with short symptom latency following dives to moderate depth, and the vestibular end organ appears more vulnerable than is the cochlea. A large right-to-left shunt (usually a persistent foramen ovale) is found in a disproportionate number of cases, suggesting that shunted venous gas emboli (VGE) cause injury to the inner-ear. However, this seems an incomplete explanation for the relationship between inner-ear DCS and right-to-left shunt. The brain must concomitantly be exposed to larger numbers of VGE, yet inner-ear DCS frequently occurs in the absence of cerebral symptoms. This may be explained by slower inert gas washout in the inner ear than in the brain. Thus, there is a window after surfacing within which VGE arriving in the inner-ear (but not the brain) would grow due to inward diffusion of supersaturated inert gas. A similar difference in gas kinetics may explain the different susceptibilities of cochlear and vestibular tissue within the inner-ear itself. The cochlea has greater perfusion and a smaller tissue volume, implying faster inert gas washout. It may be susceptible to injury by incoming arterial bubbles for a shorter time after surfacing than the vestibular organ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app