Journal Article
Review
Add like
Add dislike
Add to saved papers

Autoimmunity against dopamine receptors in neuropsychiatric and movement disorders: a review of Sydenham chorea and beyond.

Acta Physiologica 2016 January
Antineuronal autoantibodies are associated with the involuntary movement disorder Sydenham chorea (SC) and paediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) which are characterized by the acute onset of tics and/or obsessive compulsive disorder (OCD). In SC and PANDAS, autoantibodies signal human neuronal cells and activate calcium calmodulin-dependent protein kinase II (CaMKII). Animal models immunized with group A streptococcal antigens demonstrate autoantibodies against dopamine receptors and concomitantly altered behaviours. Human monoclonal antibodies (mAbs) derived from SC target and signal the dopamine D2L (long) receptor (D2R). Antibodies against D2R were elevated over normal levels in SC and acute-onset PANDAS with small choreiform movements, but were not elevated over normal levels in PANDAS-like chronic tics and OCD. The expression of human SC-derived anti-D2R autoantibody V gene in B cells and serum of transgenic mice demonstrated that the human autoantibody targets dopaminergic neurones in the basal ganglia and other types of neurones in the cortex. Here, we review current evidence supporting the hypothesis that antineuronal antibodies, specifically against dopamine receptors, follow streptococcal exposures and may target dopamine receptors and alter central dopamine pathways leading to movement and neuropsychiatric disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app