Add like
Add dislike
Add to saved papers

Midline shift in relation to thickness of traumatic acute subdural hematoma predicts mortality.

BMC Neurology 2015 October 25
BACKGROUND: Traumatic acute subdural hematoma has a high mortality despite intensive treatment. Despite the existence of several prediction models, it is very hard to predict an outcome. We investigated whether a specific combination of initial head CT-scan findings is a factor in predicting outcome, especially non-survival.

METHODS: We retrospectively studied admission head CT scans of all adult patients referred for a traumatic acute subdural hematoma between April 2009 and April 2013. Chart review was performed for every included patient. Midline shift and thickness of the hematoma were measured by two independent observers. The difference between midline shift and thickness of the hematoma was calculated. These differences were correlated with outcome. IRB has approved the study.

RESULTS: A total of 59 patients were included, of whom 29 died. We found a strong correlation between a midline shift exceeding the thickness of the hematoma by 3 mm or more, and subsequent mortality. For each evaluation, specificity was 1.0 (95 % CI: 0.85-1 for all evaluations), positive predictive value 1.0 (95 % CI between 0.31-1 and 0.56-1), while sensitivity ranged from 0.1 to 0.23 (95 % CI between 0.08-0.39 and 0.17-0.43), and negative predictive value varied from 0.52 to 0.56 (95 % CI between 0.38-0.65 and 0.41-0.69).

CONCLUSIONS: In case of a traumatic acute subdural hematoma, a difference between the midline shift and the thickness of the hematoma ≥ 3 mm at the initial CT predicted mortality in all cases. This is the first time that such a strong correlation was reported. Especially for the future development of prediction models, the relation between midline shift and thickness of the hematoma could be included as a separate factor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app