Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diffusion-weighted magnetic resonance imaging to differentiate malignant from benign gallbladder disorders.

PURPOSE: To retrospectively evaluate the utility of apparent diffusion coefficient (ADC) and lesion to spinal cord ratio (LSR) in diffusion-weighted magnetic resonance (MR) imaging (DWI) as compared with morphological assessment alone, for differentiating malignant from benign gallbladder disorders.

METHODS: This study was approved by the ethics committee, and written informed consent was waived. Ninety-one patients (13 malignancy and 78 benignancy) were reviewed. ADC was calculated using two DW images with different motion-probing gradient strengths (b=0, 1000s/mm(2)). LSR was measured by dividing the signal intensity of a thickened gallbladder wall by the maximum signal intensity of the lumbar enlargement of the spinal cord. In addition, the morphology of the gallbladders was assessed with conventional MR imaging.

RESULTS: In receiver operating characteristic curve analysis, the areas under the curves for ADC and LSR were 0.861 and 0.906, respectively. Three morphological findings were considered: a massive formation, a disrupted mucosal line, and the absence of a two-layered pattern. When a combination of two or more of these morphological findings was positive for malignancy, the sensitivity, specificity, and accuracy were 76.9%, 84.0%, and 83.0%, respectively. When a combination of three or more of the above morphological findings together with ADC of less than 1.2 × 10(-3)mm(2)/s or LSR of more than 0.48 were positive for malignancy, these values were 73.0%, 96.2%, and 92.9%, respectively. There were significant differences in specificity and accuracy.

CONCLUSION: Use of ADC and LSR in DWI can improve diagnostic performance for differentiating malignant from benign gallbladder disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app