JOURNAL ARTICLE
MULTICENTER STUDY
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Day-and-Night Closed-Loop Glucose Control in Patients With Type 1 Diabetes Under Free-Living Conditions: Results of a Single-Arm 1-Month Experience Compared With a Previously Reported Feasibility Study of Evening and Night at Home.

Diabetes Care 2016 July
OBJECTIVE: After testing of a wearable artificial pancreas (AP) during evening and night (E/N-AP) under free-living conditions in patients with type 1 diabetes (T1D), we investigated AP during day and night (D/N-AP) for 1 month.

RESEARCH DESIGN AND METHODS: Twenty adult patients with T1D who completed a previous randomized crossover study comparing 2-month E/N-AP versus 2-month sensor augmented pump (SAP) volunteered for 1-month D/N-AP nonrandomized extension. AP was executed by a model predictive control algorithm run by a modified smartphone wirelessly connected to a continuous glucose monitor (CGM) and insulin pump. CGM data were analyzed by intention-to-treat with percentage time-in-target (3.9-10 mmol/L) over 24 h as the primary end point.

RESULTS: Time-in-target (mean ± SD, %) was similar over 24 h with D/N-AP versus E/N-AP: 64.7 ± 7.6 vs. 63.6 ± 9.9 (P = 0.79), and both were higher than with SAP: 59.7 ± 9.6 (P = 0.01 and P = 0.06, respectively). Time below 3.9 mmol/L was similarly and significantly reduced by D/N-AP and E/N-AP versus SAP (both P < 0.001). SD of blood glucose concentration (mmol/L) was lower with D/N-AP versus E/N-AP during whole daytime: 3.2 ± 0.6 vs. 3.4 ± 0.7 (P = 0.003), morning: 2.7 ± 0.5 vs. 3.1 ± 0.5 (P = 0.02), and afternoon: 3.3 ± 0.6 vs. 3.5 ± 0.8 (P = 0.07), and was lower with D/N-AP versus SAP over 24 h: 3.1 ± 0.5 vs. 3.3 ± 0.6 (P = 0.049). Insulin delivery (IU) over 24 h was higher with D/N-AP and SAP than with E/N-AP: 40.6 ± 15.5 and 42.3 ± 15.5 vs. 36.6 ± 11.6 (P = 0.03 and P = 0.0004, respectively).

CONCLUSIONS: D/N-AP and E/N-AP both achieved better glucose control than SAP under free-living conditions. Although time in the different glycemic ranges was similar between D/N-AP and E/N-AP, D/N-AP further reduces glucose variability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app