Add like
Add dislike
Add to saved papers

Characterization of multidrug‑resistant osteosarcoma sublines and the molecular mechanisms of resistance.

Multidrug resistance (MDR) is a challenge for the treatment of cancer and the underlying molecular mechanisms remain elusive. The current study exposed MG63 osteosarcoma cells to increasing concentrations of vincristine (VCR) to establish four VCR‑resistant MG63/VCR cell sublines (MG63/VCR1, 2, 3 and 4). The drug resistance indices (RI) of these sublines was detected with the CCK‑8 assay and determined to be163, 476, 1,247, and 2,707‑fold higher than that of parental cells, respectively. These sublines also exhibited cross‑resistance to doxorubicin, paclitaxel and pirarubicin. With increased RI, the proliferative capacity of these sublines was gradually reduced and cell morphology was also altered, characterized by increased formation of pseudopodia and long cytoplasmic processes at opposite poles. However, the migration capacity and expression of certain drug resistance‑associated genes were not in accordance with the increased RI; multidrug resistance protein 1 (MDR1) expression was significantly increased in these sublines compared with parental cells. However, in the highly resistant MG63/VCR3 and MG63/VCR4 cells, MDR‑associated protein 1, topoisomerase II and LIM domain kinase 1 levels were significantly reduced compared with the moderately resistant MG63/VCR2 cells. Expression of glutathione S‑transferase‑π mRNA was determined using reverse transcription‑quantitative polymerase chain reaction and determined that it was not changed between MG63 and MG63/VCR cells. The data of the present study demonstrated that the molecular alterations of drug resistance may change with the degree of drug resistance. Taking cell morphology into consideration, the intratumor clonal and phenotypic heterogeneity may be responsible for drug resistance. These MG63/VCR sublines may be a valuable tool to assess drug resistance and the underlying mechanisms, and to identify novel drug resistance‑associated genes or strategies to overcome MDR in human osteosarcoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app