Add like
Add dislike
Add to saved papers

Application of chemical mechanical polishing process on titanium based implants.

Modification of the implantable biomaterial surfaces is known to improve the biocompatibility of metallic implants. Particularly, treatments such as etching, sand-blasting or laser treatment are commonly studied to understand the impact of nano/micro roughness on cell attachment. Although, the currently utilized surface modification techniques are known to improve the amount of cell attachment, it is critical to control the level of attachment due to the fact that promotion of bioactivity is needed for prosthetic implants while the cardiac valves, which are also made of titanium, need demotion of cells attachment to be able to function. In this study, a new alternative is proposed to treat the implantable titanium surfaces by chemical mechanical polishing (CMP) technique. It is demonstrated that the application of CMP on the titanium surface helps in modifying the surface roughness of the implant in a controlled manner (inducing nano-scale smoothness or controlled nano/micro roughness). Simultaneously, it is observed that the application of CMP limits the bacteria growth by forming a protective thin surface oxide layer on titanium implants. It is further shown that there is an optimal level of surface roughness where the cell attachment reaches a maximum and the level of roughness is controllable through CMP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app