Add like
Add dislike
Add to saved papers

A Quantitative Approach to Distinguish Pneumonia From Atelectasis Using Computed Tomography Attenuation.

OBJECTIVE: It is known that atelectasis demonstrates greater contrast enhancement than pneumonia on computed tomography (CT). However, the effectiveness of using a Hounsfield unit (HU) threshold to distinguish pneumonia from atelectasis has never been shown. The objective of the study is to demonstrate that an HU threshold can be quantitatively used to effectively distinguish pneumonia from atelectasis.

METHODS: Retrospectively identified CT pulmonary angiogram examinations that did not show pulmonary embolism but contained nonaerated lungs were classified as atelectasis or pneumonia based on established clinical criteria. The HU attenuation was measured in these nonaerated lungs. Receiver operating characteristic (ROC) analysis was performed to determine the area under the ROC curve, sensitivity, and specificity of using the attenuation to distinguish pneumonia from atelectasis.

RESULTS: Sixty-eight nonaerated lungs were measured in 55 patients. The mean (SD) enhancement was 62 (18) HU in pneumonia and 119 (24) HU in atelectasis (P < 0.001). A threshold of 92 HU diagnosed pneumonia with 97% sensitivity (confidence interval [CI], 80%-99%) and 85% specificity (CI, 70-93). Accuracy, measured as area under the ROC curve, was 0.97 (CI, 0.89-0.99).

CONCLUSIONS: We have established that a threshold HU value can be used to confidently distinguish pneumonia from atelectasis with our standard CT pulmonary angiogram imaging protocol and patient population. This suggests that a similar threshold HU value may be determined for other scanning protocols, and application of this threshold may facilitate a more confident diagnosis of pneumonia and thus speed treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app