Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Coming up for air: thermal dependence of dive behaviours and metabolism in sea snakes.

Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake, Hydrophis curtus; and elegant sea snake, Hydrophis elegans) that increasing temperature elevates surfacing rate, increases total oxygen consumption and decreases dive duration. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app