JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Effects of lipid packing on polymorphic phase behavior and membrane properties.

The self assembly of phospholipid molecules in the bilayer form was considered in terms of equivalent molecular shapes representing intermolecular forces. The equivalent size of each phospholipid headgroup was approximated by the net atomic volume plus the volume of the associated water molecules, which was derived from water/hydrocarbon partitioning experiments. The equivalent lengths of unsaturated acyl chains were derived from the retention time data from chromatographic measurements. The spontaneous curvature of various phospholipid monolayers was calculated from their equivalent molecular shapes, and the energy required to flatten them to the bilayer plane was calculated, using the known bending modulus. With increasing bending energy, the mixtures showed increasing susceptibility to phospholipase A2, facilitated lipid transfer rate by phospholipid exchange proteins, permeability to carboxyfluorescein, incorporation of human erythrocyte proteins, and calcium transport by Ca-ATPase from sarcoplasmic reticulum in reconstituted vesicles. When the calculation was applied to known lipid compositions of nine cellular membranes, the protein/lipid ratio and phospholipid/cholesterol ratio were found to have a positive and a negative correlation, respectively, with the latent bending energy of the phospholipids. The energy expense in conforming to a bilayer phase may be an important physical parameter regarding the activity and the biogenesis of membranes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app