JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

An analytical model of traumatic diffuse brain injury.

Diffuse axonal injury (DAI) with prolonged coma has been produced in the primate using an impulsive, rotational acceleration of the head without impact. This pathophysiological entity has been studied subsequently from a biomechanics perspective using physical models of the skull-brain structure. Subjected to identical loading conditions as the primate, these physical models permit one to measure the deformation within the surrogate brain tissue as a function of the forces applied to the head. An analytical model designed to approximate these experiments has been developed in order to facilitate an analysis of the parameters influencing brain deformation. These three models together are directed toward the development of injury tolerance criteria based upon the shear strain magnitude experienced by the deep white matter of the brain. The analytical model geometry consists of a rigid, right-circular cylindrical shell filled with a Kelvin-Voigt viscoelastic material. Allowing no slip on the boundary, the shell is subjected to a sudden, distributed, axisymmetric, rotational load. A Fourier series representation of the load allows unrestricted load-time histories. The exact solution for the relative angular displacement (V) and the infinitesimal shear strain (epsilon) at any radial location in the viscoelastic material with respect to the shell was determined.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app