Clinical Trial
Journal Article
Multicenter Study
Add like
Add dislike
Add to saved papers

Ibrutinib efficacy and tolerability in patients with relapsed chronic lymphocytic leukemia following allogeneic HCT.

Blood 2016 December 23
Ibrutinib, a potent and irreversible small-molecule inhibitor of both Bruton's tyrosine kinase and interleukin-2 inducible kinase (ITK), has been used to treat relapsed/refractory chronic lymphocytic leukemia (CLL) with prolongation of progression-free and overall survival. Here, we present 27 patients with relapsed CLL following allogeneic hematopoietic cell transplant (HCT) who subsequently received ibrutinib salvage therapy. Sixteen of these patients were part of multi-institutional clinical trials and achieved an overall response rate of 87.5%. An additional 11 patients were treated at Stanford University following US Food and Drug Administration approval of ibrutinib; 7 (64%) achieved a complete response, and 3 (27%) achieved a partial response. Of the 9 patients treated at Stanford who had mixed chimerism-associated CLL relapse, 4 (44%) converted to full donor chimerism following ibrutinib initiation, in association with disease response. Four of 11 (36%) patients evaluated by ClonoSeq achieved minimal residual disease negativity with CLL <1/10 000 white blood cells, which persisted even after ibrutinib was discontinued, in 1 case even after 26 months. None of the 27 patients developed graft-versus-host-disease (GVHD) following ibrutinib initiation. We postulate that ibrutinib augments the graft-versus-leukemia (GVL) benefit through a T-cell-mediated effect, most likely due to ITK inhibition. To investigate the immune modulatory effects of ibrutinib, we completed comprehensive immune phenotype characterization of peripheral B and T cells from treated patients. Our results show that ibrutinib selectively targets pre-germinal B cells and depletes Th2 helper cells. Furthermore, these effects persisted after drug discontinuation. In total, our results provide evidence that ibrutinib effectively augments GVL without causing GVHD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app