Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Highly Sensitive Detection of Minimal Cardiac Ischemia using Positron Emission Tomography Imaging of Activated Platelets.

Scientific Reports 2016 December 3
A reliable method for the diagnosis of minimal cardiac ischemia would meet a strong demand for the sensitive diagnosis of coronary artery disease in cardiac stress testing and risk stratification in patients with chest pain but unremarkable ECGs and biomarkers. We hypothesized that platelets accumulate early on in ischemic myocardium and a newly developed technology of non-invasive molecular PET imaging of activated platelets can thus detect minimal degrees of myocardial ischemia. To induce different degrees of minimal cardiac ischemia, the left anterior descending artery (LAD) was ligated for 10, 20 or 60 min. Mice were injected with a newly generated scFvanti-GPIIb/IIIa -64 CuMeCOSar radiotracer, composed of a single-chain antibody that only binds to activated integrin GPIIb/IIIa (αIIb βIII ) and thus to activated platelets, and a sarcophagine cage MeCOSar complexing the long half-life PET tracer copper-64. A single PET/CT scan was performed. Evans Blue/TTC staining to detect necrosis as well as classical serological biomarkers like Troponin I and heart-type fatty acid-binding protein (H-FABP) were negative, whereas PET imaging of activated platelets was able to detect small degrees of ischemia. Taken together, molecular PET imaging of activated platelets represents a unique and highly sensitive method to detect minimal cardiac ischemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app