Add like
Add dislike
Add to saved papers

Autofluorescence lifetime variation in the cuticle of the bedbug Cimex lectularius.

The decay time of the fluorescence of excited molecules, called fluorescence lifetime, can provide information about the cuticle composition additionally to widely used spectral characteristics. We compared autofluorescence lifetimes of different cuticle regions in the copulatory organ of females of the bedbug, Cimex lectularius. After two-photon excitation at 720 nm, regions recently characterised as being rich in resilin showed a longer bimodal distribution of the mean autofluorescence lifetime τm (tau-m) at 0.4 ns and 1.0-1.5 ns, while resilin-poor sites exhibited a unimodal pattern with a peak around 0.8 ns. The mean lifetime, and particularly its second component, can be useful to distinguish resilin-rich from resilin-poor parts of the cuticle. The few existing literature data suggest that chitin is unlikely responsible for the main autofluorescent component observed in the resilin-poor areas in our study and that melanin requires further scrutiny. Autofluorescence lifetime measurements can help to characterise properties of the arthropod cuticle, especially when coupled with multiphoton excitation to allow for deeper tissue penetration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app