Add like
Add dislike
Add to saved papers

Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-κB activation and leads to incontinentia pigmenti.

BACKGROUND: Incontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO.

OBJECTIVES: We sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway.

METHODS: We sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β.

RESULTS: We identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1-/- cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination.

CONCLUSION: We identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app