Add like
Add dislike
Add to saved papers

DNA repair gene expressions are related to bone marrow cellularity in myelodysplastic syndrome.

OBJECTIVE: To evaluate the expression of genes related to nuclear excision (ERCC8, XPA and XPC), homologous recombination and non-homologous end-joining (ATM, BRCA1, BRCA2 and LIG4) repair mechanisms, using quantitative PCR methodologies, and it relation with bone marrow cellularity in myelodysplastic syndrome (MDS).

METHODS AND RESULTS: A total of 51 adult de novo patients with MDS (3 refractory anaemia (RA), 11 refractory anaemia with ringed sideroblasts (RARS), 28 refractory cytopenia with multilineage dysplasia (RCMD), 3 refractory anaemia with excess blasts type I (RAEB-I), 5 refractory anaemia with excess blasts type II (RAEB-II), and 1 chronic myelomonocytic leukaemia (CMML) were evaluated. For karyotype, 16.2% patients were defined as very low prognosis, 59.5% low risk, 8.1% intermediate risk, 5.4% high risk and 10.8% very high risk. For bone marrow cellularity, 17.6%, 17.6% and 64.7% presented as hypocellular, normocellular and hypercellular, respectively. Patients with hypocellular MDS had significantly decreased expression of ATM (p=0.000), BRCA1 (p=0.014), BRCA2 (p=0.003), LIG4 (p=0.004) and ERCC8 (p=0.000) than those with normocellular/hypercellular bone marrow, whereas XPA (p=0.049) and XPC (p=0.000) genes were increased. In patients with hypoplastic MDS, a low expression of ATM (p=0.0268), LIG4 (p=0.0199) and ERCC8 (p=0.0493) was significantly associated with the presence of chromosomal abnormalities. We detected positive correlations between BRCA1 and BRCA2 (r=0.416; p=0.007), ATM and LIG4 (r=0.472; p=0.001), LIG4 and BRCA1 (r=0.333; p=0.026), LIG4 and BRCA2 (r=0.334; p=0.025), ATM and XPA (r=0.377; p=0.008), ATM and XPC (r=0.287; p=0.046), LIG4 and XPC (r=0.371; p=0.007) and XPA and XPC genes (r=0.895; p=0.0000). We also found among all patients evaluated that correlation with LIG4 occurred most often.

CONCLUSIONS: These correlations demonstrate the important intrinsic relations between single and double DNA strand breaks genes in MDS, emphasising that these genes are related to MDS pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app