JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

STAT3 gain-of-function mutations associated with autoimmune lymphoproliferative syndrome like disease deregulate lymphocyte apoptosis and can be targeted by BH3 mimetic compounds.

Autoimmune lymphoproliferative syndrome (ALPS) is typically caused by mutations in genes of the extrinsic FAS mediated apoptotic pathway, but for about 30% of ALPS-like patients the genetic diagnosis is lacking. We analyzed 30 children with ALPS-like disease of unknown cause and identified two dominant gain-of-function mutations of the Signal Transducer And Activator Of Transcription 3 (STAT3, p.R278H, p.M394T) leading to increased transcriptional activity. Hyperactivity of STAT3, a known repressor of FAS, was associated with decreased FAS-mediated apoptosis, mimicking ALPS caused by FAS mutations. Expression of BCL2 family proteins, further targets of STAT3 and regulators of the intrinsic apoptotic pathway, was disturbed. Cells with hyperactive STAT3 were consequently more resistant to intrinsic apoptotic stimuli and STAT3 inhibition alleviated this effect. Importantly, STAT3-mutant cells were more sensitive to death induced by the BCL2-inhibitor ABT-737 indicating a dependence on anti-apoptotic BCL2 proteins and potential novel therapeutic options.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app