JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Pendred syndrome.

Pendred syndrome is an autosomal recessive disorder that is classically defined by the combination of sensorineural deafness/hearing impairment, goiter, and an abnormal organification of iodide with or without hypothyroidism. The hallmark of the syndrome is the impaired hearing, which is associated with inner ear malformations such as an enlarged vestibular aqueduct (EVA). The thyroid phenotype is variable and may be modified by the nutritional iodine intake. Pendred syndrome is caused by biallelic mutations in the SLC26A4/PDS gene, which encodes the multifunctional anion exchanger pendrin. Pendrin has affinity for chloride, iodide, and bicarbonate, among other anions. In the inner ear, pendrin functions as a chloride/bicarbonate exchanger that is essential for maintaining the composition and the potential of the endolymph. In the thyroid, pendrin is expressed at the apical membrane of thyroid cells facing the follicular lumen. Functional studies have demonstrated that pendrin can mediate iodide efflux in heterologous cells. This, together with the thyroid phenotype observed in humans (goiter, impaired iodine organification) suggests that pendrin could be involved in iodide efflux into the lumen, one of the steps required for thyroid hormone synthesis. Iodide efflux can, however, also occur in the absence of pendrin suggesting that other exchangers or channels are involved. It has been suggested that Anoctamin 1 (ANO1/TMEM16A), a calcium-activated anion channel, which is also expressed at the apical membrane of thyrocytes, could participate in mediating apical efflux. In the kidney, pendrin is involved in bicarbonate secretion and chloride reabsorption. While there is no renal phenotype under basal conditions, severe metabolic alkalosis has been reported in Pendred syndrome patients exposed to an increased alkali load. This review provides an overview on the clinical spectrum of Pendred syndrome, the functional data on pendrin with a focus on its potential role in the thyroid, as well as the controversy surrounding the relative physiological roles of pendrin and anoctamin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app