Add like
Add dislike
Add to saved papers

Down-expression of P2RX2, KCNQ5, ERBB3 and SOCS3 through DNA hypermethylation in elderly women with presbycusis.

CONTEXT: Presbycusis, an age-related hearing impairment (ARHI), represents the most common sensory disability in adults. Today, the molecular mechanisms underlying presbycusis remain unclear. This is in particular due to the fact that ARHI is a multifactorial complex disorder resulting from several genomic factors interacting with lifelong cumulative effects of: disease, diet, and environment.

OBJECTIVE: Identification of novel biomarkers for presbycusis.

MATERIALS AND METHODS: We selectively ascertained 18 elderly unrelated women lacking environmental and metabolic risk factors. Subsequently, we screened for methylation map changes in blood samples of women with presbycusis as compared to controls, using reduced representation bisulfite sequencing. We focused on hypermethylated cytosine bases located in gene promoters and the first two exons. To elucidate the related gene expression changes, we performed transcriptomic study using gene expression microarray.

RESULTS: Twenty-seven genes, known to be expressed in adult human cochlea, were found in the blood cells to be differentially hypermethylated with significant (p < 0.01) methylation differences (>30%) and down-expressed with fold change >1.2 (FDR <0.05). Functional annotation and qRT-PCR further identified P2RX2, KCNQ5, ERBB3 and SOCS3 to be associated with the progression of ARHI.

DISCUSSION AND CONCLUSION: Down-expressed genes associated with DNA hypermethylation could be used as biomarkers for understanding complex pathogenic mechanisms underlying presbycusis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app