JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Safety and Feasibility of the OmniPod Hybrid Closed-Loop System in Adult, Adolescent, and Pediatric Patients with Type 1 Diabetes Using a Personalized Model Predictive Control Algorithm.

BACKGROUND: The safety and feasibility of the OmniPod personalized model predictive control (MPC) algorithm in adult, adolescent, and pediatric patients with type 1 diabetes were investigated.

METHODS: This multicenter, observational trial included a 1-week outpatient sensor-augmented pump open-loop phase and a 36-h inpatient hybrid closed-loop (HCL) phase with announced meals ranging from 30 to 90 g of carbohydrates and limited physical activity. Patients aged 6-65 years with HbA1c between 6.0% and 10.0% were eligible. The investigational system included a modified version of OmniPod, the Dexcom G4 505 Share® AP System, and the personalized MPC algorithm running on a tablet computer. Primary endpoints included sensor glucose percentage of time in hypoglycemia <70 mg/dL and hyperglycemia >250 mg/dL. Additional glycemic targets were assessed.

RESULTS: The percentage of time <70 mg/dL during the 36-h HCL phase was mean (standard deviation): 0.7 (1.7) in adults receiving 80% meal bolus (n = 24), and 0.7 (1.2) in adults (n = 10), 2.0 (2.4) in adolescents (n = 12), and 2.0 (2.6) in pediatrics (n = 12) receiving 100% meal bolus. The overall hypoglycemia rate was 0.49 events/24 h. The percentage of time >250 mg/dL was 8.0 (7.5), 3.6 (3.7), 4.9 (6.3), and 6.7 (5.6) in the study groups, respectively. Percentage of time in the target range of 70-180 mg/dL was 69.5 (14.4), 73.0 (15.0), 72.6 (15.5), and 70.1 (12.3), respectively.

CONCLUSIONS: The OmniPod personalized MPC algorithm performed well and was safe during day and night use in adult, adolescent, and pediatric patients with type 1 diabetes. Longer term studies will assess the safety and performance of the algorithm under free living conditions with extended use.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app