JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Untangling the R2* contrast in multiple sclerosis: A combined MRI-histology study at 7.0 Tesla.

T2*-weighted multi-echo gradient-echo magnetic resonance imaging and its reciprocal R2* are used in brain imaging due to their sensitivity to iron content. In patients with multiple sclerosis who display pathological alterations in iron and myelin contents, the use of R2* may offer a unique way to untangle mechanisms of disease. Coronal slices from 8 brains of deceased multiple sclerosis patients were imaged using a whole-body 7.0 Tesla MRI scanner. The scanning protocol included three-dimensional (3D) T2*-w multi-echo gradient-echo and 2D T2-w turbo spin echo (TSE) sequences. Histopathological analyses of myelin and iron content were done using Luxol fast blue and proteolipid myelin staining and 3,3'-diaminobenzidine tetrahydrochloride enhanced Turnbull blue staining. Quantification of R2*, myelin and iron intensity were obtained. Variations in R2* were found to be affected differently by myelin and iron content in different regions of multiple sclerosis brains. The data shall inform clinical investigators in addressing the role of T2*/R2* variations as a biomarker of tissue integrity in brains of MS patients, in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app