Add like
Add dislike
Add to saved papers

Collagen cross-linking impact on keratoconus extracellular matrix.

BACKGROUND: Keratoconus (KC) is a common multifactorial ectatic corneal disease with unknown onset. KC most commonly appears in adolescence and affects approximately 1:400 people worldwide. Treatment options, for advanced KC cases, are collagen cross-linking (CXL) and corneal transplants. CXL is a new KC treatment that helps arrest the disease. Unfortunately, only a fraction of KC patients will qualify for CXL treatment. Our goal, in this study, was to begin to understand how CXL affects the corneal microenvironment and pave the way towards a more patient-driven CXL treatment.

METHODS: Primary human corneal fibroblasts from healthy and KC donors were plated on transwell polycarbonate membranes and stimulated by a stable vitamin C. At 4 weeks, riboflavin was added followed by UVA irradiation. Transmission Electron Microscopy (TEM) and western blots were used to assess the effect of CXL on the extracellular matrix (ECM) and the resident cells, pre- and post CXL.

RESULTS: Data shows CXL improved lamellar organization showing more organized collagen fibrils decorated with proteoglycans (PGs). The distribution of the collagen fibrils and interfibrillar spacing was also visibly improved, post-CXL. Lumican, mimecan, and decorin were the dominant PGs and were significantly upregulated in post-CXL cultures. ECM degradation proteins, matrix metalloproteinases (MMPs), MMP-1, -3, and -9, but not MMP-2, were significantly downregulated post-CXL. TIMP-1 and -2 were not modulated by CXL.

CONCLUSION: The unknown effects of CXL on the human corneal microenvironment have hampered our ability to make CXL available to all KC patients. Our current study provides a deeper understanding on CXL activity, using our unique 3D in vitro model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app