Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease.

In calcium pyrophosphate dihydrate (CPPD) crystal deposition disease, metabolic abnormalities favoring extracellular inorganic pyrophosphate (PPi) accumulation have been suspected. Elevations of intracellular PPi in cultured skin fibroblasts from a single French kindred with familial CPPD deposition (19) and elevated nucleoside triphosphate pyrophosphohydrolase activity (NTPPPH), which generates PPi in extracts of CPPD crystal-containing cartilages (14) favor this suspicion. To determine whether NTPPPH activity or PPi content of cells might be a disease marker expressed in extraarticular cells, human skin-derived fibroblasts were obtained from control donors and patients affected with the sporadic and familial varieties of CPPD (CPPD-S and CPPD-F) deposition. Intracellular PPi was elevated in both CPPD-S (P less than 0.05) and CPPD-F (P less than 0.01) fibroblasts compared with control fibroblasts. Ecto-NTPPPH activity was elevated in CPPD-S (P less than 0.01) but not CPPD-F. Intracellular PPi correlated with ecto-NTPPPH (P less than 0.01). Elevated PPi levels in skin fibroblasts may serve as a biochemical marker for patients with familial or sporadic CPPD crystal deposition disease; ecto-NTPPPH activity further separates the sporadic and familial disease types. Expression of these biochemical abnormalities in nonarticular cells implies a generalized metabolic abnormality.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app