Add like
Add dislike
Add to saved papers

Pathophysiology of corticobasal degeneration: Insights from neurophysiological studies.

BACKGROUND: Several studies have applied electrophysiological techniques to physiologically characterize corticobasal degeneration (CBD).

METHODS: We performed a systematic literature search of these studies and reviewed all 25 identified articles.

RESULTS: Conventional electroencephalography (EEG) is usually normal even in the late stages of disease. Quantitative EEG (qEEG) with spectral analysis revealed mainly lateralized abnormalities, such as an increase of slow wave activity and occasionally the occurrence of sharp waves, and a significant increase of coherence between left parietal-right premotor areas. CBD patients generally have long latency reflexes (LLR) with shorter latencies than in the classic cortical reflex myoclonus observed in progressive myoclonic epilepsy. The somatosensory evoked potentials (SEPs) showed reduced amplitude of the N20-P25 component. These abnormalities may reflect dysfunction of sensory projections to the motor cortex, while the localized parietal cortical damage is thought to be a pivotal factor for the absence of giant SEPs in these patients. Transcranial magnetic stimulation (TMS) revealed asymmetric intracortical disinhibition and asymmetric maps organization; an impaired transcallosal pathways function correlates with the atrophy of the corpus callosum. These findings suggest a pathologic hyperexcitability of the motor cortex, due to a loss of inhibitory input from the sensory cortex.

CONCLUSIONS: Neurophysiological techniques, in combination with neuroimaging studies, may shed light on the pathophysiological mechanisms of CBD. A better understanding of the disease processes may help clinicians to make a more accurate and early diagnosis. TMS, SEP, LLR, and co-evaluation of EEG and EMG can aid the in differentiation between CBD and other parkinsonism syndromes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app