Add like
Add dislike
Add to saved papers

Whole exome sequencing identifies novel predisposing genes in neural tube defects.

BACKGROUND: Neural tube defects (NTD) are among the most common defects affecting 1:1000 births. They are caused by a failure of neural tube closure during development. Their clinical presentation is diverse and dependent on the site and severity of the original defect on the embryonic axis. The etiology of NTD is multifactorial involving environmental factors and genetic variants that remain largely unknown.

METHODS: We have conducted a whole exome sequencing (WES) study in five new NTD families and pooled the results with WES data from three NTD families and 43 trios that were previously investigated by our group. We analyzed the data using biased candidate gene and unbiased gene burden approaches.

RESULTS: We identified four novel loss-of-function variants in three genes, MTHFR, DLC1, and ITGB1, previously associated with NTD. Notably, DLC1 carried two protein truncating variants in two independent cases. We also demonstrated an enrichment of variants in MYO1E involved in cytoskeletal remodeling. This enrichment reached borderline significance in a replication cohort supporting the association of this new candidate gene to NTD.

CONCLUSION: These data provide some key insights into the pathogenic mechanisms of human NTD and demonstrate the power of next-generation sequencing in deciphering the genetics of this complex trait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app