JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tsc1 ablation in Prx1 and Osterix lineages causes renal cystogenesis in mouse.

Scientific Reports 2019 January 30
Tuberous Sclerosis Complex (TSC) is caused by mutations in TSC1 or TSC2, which encode negative regulators of the mTOR signaling pathway. The renal abnormalities associated with TSC include angiomyolipoma, cysts, and renal cell carcinoma. Here we report that specific ablation of Tsc1 using the mesenchymal stem cell-osteoblast lineage markers induced cystogenesis in mice. Using Rosa-tdTomato mice, we found that Prx1- or Dermo1-labeled cells were present in the nephron including glomerulus but they were not stained by markers for podocytes, mesangial cells, endothelial cells, or proximal or loop of Henle tubular cells, while Osx is known to label tubular cells. Tsc1 deficiency in Prx1 lineage cells caused development of mild cysts that were positive only for Tamm-Horsfall protein (THP), a loop of Henle marker, while Tsc1 deficiency in Osx lineage cells caused development of cysts that were positive for Villin, a proximal tubular cell marker. On the other hand, Tsc1 deficiency in the Dermo1 lineage did not produce detectable phenotypical changes in the kidney. Cyst formation in Prx1-Cre; Tsc1f/f and Osx-Cre; Tsc1f/f mice were associated with increase in both proliferative and apoptotic cells in the affected tissue and were largely suppressed by rapamycin. These results suggest that Prx1 and Osx lineages cells may contribute to renal cystogenesis in TSC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app