EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastasis using arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging.

BACKGROUND AND PURPOSE: Conventional magnetic resonance imaging (MRI) is sometimes difficult to distinguish primary central nervous system lymphoma (PCNSL) from other malignant brain tumors effectively. The study aimed to evaluate the diagnostic performance of arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE)-derived permeability parameters to differentiate PCNSL from high-grade glioma (HGG) and brain metastasis.

MATERIALS AND METHODS: Eight patients with PCNSL, twenty one patients with HGG and six brain metastasis underwent preoperative 3.0-T MR imaging including conventional, ASL and DCE. Quantitative parameters including relative cerebral blood flow (rCBF), extravascular extracellular volume fraction (Ve ) and the volume transfer constant (Ktrans ) among PCNSL, HGG and metastasis were compared with a one-way analysis of variance. In addition, the area under the receiver-operating characteristic (ROC) curve (AUC) was constructed to evaluate the differentiation diagnostic performance of each parameter and the combination.

RESULTS: The PCNSL demonstrated significantly lower rCBF, higher Ktrans and Ve compared with HGG and metastasis. For the ROC analyses, both Ktrans and rCBF had good diagnostic performance for discriminating PCNSL from HGG and metastasis, with the AUC of 0.880 and 0.889. With the combination of rCBF and Ktrans , the diagnostic ability for PCNSL was improved with AUC of 0.986.

CONCLUSION: rCBF and Ktrans are useful parameters for differentiating PCNSL from HGG and brain metastasis. The combination of rCBF and Ktrans further helps to improve the diagnostic performance of PCNSL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app