Journal Article
Review
Add like
Add dislike
Add to saved papers

Effects of Magnesium Deficiency on Mechanisms of Insulin Resistance in Type 2 Diabetes: Focusing on the Processes of Insulin Secretion and Signaling.

Magnesium (Mg2+ ) is an essential mineral for human health and plays an important role in the regulation of glucose homeostasis and insulin actions. Despite the widespread clinical evidences for the association of Mg2+ deficiency (MgD) and type 2 diabetes mellitus (T2D), molecular mechanisms by which Mg2+ contributes to insulin resistance (IR) are still under discussion. Mg2+ regulates electrical activity and insulin secretion in pancreatic beta-cells. Intracellular Mg2+ concentrations are critical for the phosphorylation of the insulin receptor and other downstream signal kinases of the target cells. Low Mg2+ levels result in a defective tyrosine kinase activity, post-receptor impairment in insulin action, altered cellular glucose transport, and decreased cellular glucose utilization, which promotes peripheral IR in T2D. MgD triggers chronic systemic inflammation that also potentiates IR. People with T2D may end up in a vicious circle in which MgD increases IR and IR causes MgD, that requires periodic monitoring of serum Mg2+ levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app