Case Reports
Journal Article
Add like
Add dislike
Add to saved papers

Janus kinase inhibition induces disease remission in cutaneous sarcoidosis and granuloma annulare.

BACKGROUND: Sarcoidosis and granuloma annulare (GA) are cutaneous granulomatous disorders that can be difficult to treat. There is evidence of underlying Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway activation in sarcoidosis, suggesting that JAK inhibition might be effective.

OBJECTIVE: To evaluate treatment with tofacitinib, a JAK inhibitor, in patients with recalcitrant sarcoidosis and GA.

METHODS: A prospective evaluation of tofacitinib in 4 consecutive patients with recalcitrant cutaneous sarcoidosis (n = 3) and generalized GA (n = 1) was conducted. Immunohistochemical analysis of skin biopsy specimens from other patients with sarcoidosis (n = 21) and GA (n = 17) was performed to characterize patterns of JAK-STAT pathway activation.

RESULTS: Tofacitinib resulted in a mean improvement in the baseline Cutaneous Sarcoidosis Activity and Morphology Instrument and Granuloma Annulare Scoring Index scores of 96% (standard deviation, 2%). Histologic resolution of disease was documented in all patients (3 out of 3) who had skin biopsies while receiving therapy. Constitutive STAT1 and STAT3 activation was observed in both sarcoidosis and GA, albeit in different patterns. Signal regulatory protein α may explain the differences in JAK-STAT signaling between sarcoidosis and GA.

LIMITATIONS: The study is limited by the small number of participants.

CONCLUSIONS: Tofacitinib resulted in dramatic improvement in 4 patients with cutaneous sarcoidosis and GA. Larger studies are underway to better understand this effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app