Add like
Add dislike
Add to saved papers

Late gadolinium enhancement on cardiac magnetic resonance combined with 123I- metaiodobenzylguanidine scintigraphy strongly predicts long-term clinical outcome in patients with dilated cardiomyopathy.

Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) is limited in its ability to detect diffuse interstitial fibrosis, which is commonly found in idiopathic dilated cardiomyopathy (DCM). On the other hand, Washout rate (WR) by cardiac 123I- metaiodobenzylguanidine (123I-MIBG) scintigraphy which evaluates cardiac sympathetic nervous function, is a useful tool for predicting the prognosis in DCM. We investigated the predictive value of the combination of two different types of examinations, LGE on CMR and WR by 123I-MIBG scintigraphy for outcomes in DCM compared with LGE alone. One-hundred forty-eight DCM patients underwent CMR and 123I-MIBG scintigraphy. Patients were divided into 4 groups according to the presence or absence of LGE and WR cut-off value of 45% for predicting prognosis based on receiver operating characteristic curve analysis. Cardiac deaths, re-hospitalization for heart failure, implantation of a left ventricular assist device, and life-threatening ventricular arrhythmias were defined as clinical events. Forty-two DCM patients reached the clinical events during the median follow-up for 9.1 years (interquartile range, 8.0-9.2 years).Multivariable Cox regression analysis identified WR≥45%+LGE positive group as an independent predictor of cardiac events (HR 3.18, 95%CI 1.36-7.45, p = 0.008). Notably, there was no significance in the cardiac event-free survival rate between the WR<45%+LGE positive and WR≥45%+LGE negative groups (p = 0.89). The combination of WR by 123I-MIBG scintigraphy and LGE on CMR, which evaluate different type of cardiac deterioration, serves as a stronger predictor of long-term outcomes in DCM patients than LGE alone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app