JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Near-Infrared Optical Nanosensors for Continuous Detection of Glucose.

BACKGROUND: Continuous glucose monitors (CGMs) enable people with diabetes to proactively manage their blood glucose and reduce the risk of hypoglycemia. Commercially available CGMs utilize percutaneous electrodes that, after days to weeks of implantation, are subjected to the foreign body response that severely reduces sensor accuracy. The previous work demonstrated the use of hydrogels containing a glucose-responsive viologen that quenches a nearby fluorophore. Here, we investigate the immobilization of this sensing motif onto a nanoparticle surface and optimize local surface concentrations for optical glucose sensing.

METHODS: A viologen quencher-fluorescent dye system was incorporated into poly(2-hydroethyl methacrylate) hydrogels in varying quantities to assess the effect of quencher-fluorophore concentration on glucose responsiveness. The sensing motif was then immobilized onto silica nanoparticles by carbodiimide chemistry. Nanosensors with a range of dye and quencher concentrations were challenged for glucose responsiveness to determine the optimal sensor formulation.

RESULTS: When incorporated into a hydrogel, high concentrations of viologen quencher and fluorophore were required to permit electron transfer between the two components and yield a detectable glucose response. Immobilization of this glucose-responsive system onto a silica nanoparticle facilitated this electron transfer to yield detectable responses at even low concentrations. Increasing quencher concentration on the nanoparticle, relative to the fluorophore, resulted in the greatest apparent glucose response.

CONCLUSION: The nanoparticle sensors demonstrated excellent glucose response in the physiological range and are a promising tool for real-time glucose tracking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app