Journal Article
Validation Study
Add like
Add dislike
Add to saved papers

Simple validated method of LC-MS/MS determination of BZ agent in rat plasma samples.

Agent BZ (3-quinuclidinyl benzilate) is a centrally acting synthetic anticholinergic agent, considered as a potential military incapacitating chemical warfare agent. Despite its significance as a model compound in pharmacological research and its potential misuse in chemical attacks, few modern analytical methods for BZ determination in biological samples have been published. The goal of the present work is to develop and validate a sensitive and rapid LC-MS/MS method for the determination of agent BZ in rat plasma. The sample preparation was based on solid-phase extraction on C-18 cartridges. The reversed-phase HPLC coupled with the mass spectrometer with electrospray ionization in the positive ion-selective reaction monitoring mode was employed in the BZ analysis. Atropine was used as an internal standard. The presented method is selective, accurate, precise, and linear (r2 = 0.9947) in a concentration range from 0.5 ng/mL to 1 000 ng/mL and sensitive enough (limit of detection 0.2 ng/mL; limit of quantification 0.5 ng/mL) to determine the BZ plasma levels in rats exposed to 2 mg/kg and 10 mg/kg of BZ. The highest level of BZ in plasma was observed 5 minutes after intramuscular administration (154.6 ± 22.3 ng/mL in rats exposed to 2 mg/kg of BZ and 1024 ± 269 ng/mL in rats exposed to 10 mg/kg). After 48 h, no BZ was observed at detectable levels. This new method allows the detection and quantification of BZ in biological samples after exposure of an observed organism and it will be further optimized for other tissues to observe the distribution of BZ in organs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app