JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correction of ATM mutations in iPS cells from two ataxia-telangiectasia patients restores DNA damage and oxidative stress responses.

Patients with ataxia-telangiectasia (A-T) lack a functional ATM kinase protein and exhibit defective repair of DNA double-stranded breaks and response to oxidative stress. We show that CRISPR/Cas9-assisted gene correction combined with piggyBac (PB) transposon-mediated excision of the selection cassette enables seamless restoration of functional ATM alleles in induced pluripotent stem cells from an A-T patient carrying compound heterozygous exonic missense/frameshift mutations, and from a patient with a homozygous splicing acceptor mutation of an internal coding exon. We show that the correction of one allele restores expression of ~ 50% of full-length ATM protein and ameliorates DNA damage-induced activation (auto-phosphorylation) of ATM and phosphorylation of its downstream targets, KAP-1 and H2AX. Restoration of ATM function also normalizes radiosensitivity, mitochondrial ROS production and oxidative-stress-induced apoptosis levels in A-T iPSC lines, demonstrating that restoration of a single ATM allele is sufficient to rescue key ATM functions. Our data further show that despite the absence of a functional ATM kinase, homology-directed repair and seamless correction of a pathogenic ATM mutation is possible. The isogenic pairs of A-T and gene-corrected iPSCs described here constitute valuable tools for elucidating the role of ATM in ageing and A-T pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app