Add like
Add dislike
Add to saved papers

Toward newborn screening of cerebrotendinous xanthomatosis: results of a biomarker research study using 32,000 newborn dried blood spots.

PURPOSE: Cerebrotendinous xanthomatosis (CTX) is a treatable hereditary disorder caused by the deficiency of sterol 27-hydroxylase, which is encoded by the CYP27A1 gene. Different newborn screening biomarkers for CTX have been described, including 7α,12α-dihydroxy-4-cholesten-3-one (7α12αC4), 5β-cholestane-3α,7α,12α,25-tetrol glucuronide (GlcA-tetrol), the ratio of GlcA-tetrol to tauro-chenodeoxycholic acid (t-CDCA) (GlcA-tetrol/t-CDCA), and the ratio of tauro-trihydroxycholestanoic acid (t-THCA) to GlcA-tetrol (t-THCA/GlcA-tetrol). We set out to evaluate these screening methods in a research study using over 32,000 newborn dried blood spots (DBS).

METHODS: Metabolites were extracted from DBS with methanol containing internal standard, which was then quantified by ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS).

RESULTS: The measurement of 7α12αC4 was complicated by isobaric interferences and was discontinued. A total of 32,737 newborns were screened based on the GlcA-tetrol concentration in DBS. GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios were also calculated. Newborns displaying both elevated GlcA-tetrol and GlcA-tetrol/t-CDCA ratio were considered to be screen positives. The t-THCA/GlcA-tetrol ratio was used to further distinguish CTX screen positives from Zellweger Spectrum Disorder (ZSD) screen positives. Only one newborn displayed both elevated GlcA-tetrol concentration in DBS and a typical CTX biochemical profile. This newborn was interpreted as a CTX-affected patient as CYP27A1 gene sequencing identified two known pathogenic variants.

CONCLUSION: The results indicate that both GlcA-tetrol and the GlcA-tetrol/t-CDCA ratio are excellent CTX biomarkers suitable for newborn screening. By characterizing the relationship of GlcA-tetrol, t-CDCA, and t-THCA as secondary markers, 100% assay specificity can be achieved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app