Add like
Add dislike
Add to saved papers

Variant type and position predict two distinct limb phenotypes in patients with GLI3-mediated polydactyly syndromes.

INTRODUCTION: Pathogenic DNA variants in the GLI-Kruppel family member 3 ( GLI3) gene are known to cause multiple syndromes: for example, Greig syndrome, preaxial polydactyly-type 4 (PPD4) and Pallister-Hall syndrome. Out of these, Pallister-Hall is a different entity, but the distinction between Greig syndrome and PPD4 is less evident. Using latent class analysis (LCA), our study aimed to investigate the correlation between reported limb anomalies and the reported GLI3 variants in these GLI3-mediated polydactyly syndromes. We identified two subclasses of limb anomalies that relate to the underlying variant.

METHODS: Both local and published cases were included for analysis. The presence of individual limb phenotypes was dichotomised and an exploratory LCA was performed. Distribution of phenotypes and genotypes over the classes were explored and subsequently the key predictors of latent class membership were correlated to the different clustered genotypes.

RESULTS: 297 cases were identified with 127 different variants in the GLI3 gene. A two-class model was fitted revealing two subgroups of patients with anterior versus posterior anomalies. Posterior anomalies were observed in cases with truncating variants in the activator domain (postaxial polydactyly; hand, OR: 12.7; foot, OR: 33.9). Multivariate analysis supports these results (Beta: 1.467, p=0.013 and Beta: 2.548, p<0.001, respectively). Corpus callosum agenesis was significantly correlated to these variants (OR: 8.8, p<0.001).

CONCLUSION: There are two distinct phenotypes within the GLI3-mediated polydactyly population: anteriorly and posteriorly orientated. Variants that likely produce haploinsufficiency are associated with anterior phenotypes. Posterior phenotypes are associated with truncating variants in the activator domain. Patients with these truncating variants have a greater risk for corpus callosum anomalies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app