Add like
Add dislike
Add to saved papers

Three-dimensional design of a geometric model for an ocular prosthesis in ex vivo anophthalmic socket models.

PURPOSE: Fitting a customized ocular prosthesis for anophthalmic patients entails an artisanal labour-exhausting process and is standardly based on impression moulding of the socket, which may be anatomically inaccurate. The objective of the study was to design an impression-free socket mould with three-dimensional (3D) technology.

METHODS: The ex vivo anophthalmic socket models included one silicone, one fresh pig cadaver head and three fresh-frozen human cadaver heads. After intra-socket application with iodine substance, five observers obtained eighteen low-dose cone beam computed tomography (CBCT) scans and one observer one high-dose CBCT scan of each model. The observers designed non-impression 3D moulds of the socket with 3D software. For the human cadaver sockets 3D geometric models of the ocular prosthesis were rendered from the 3D mould of the socket and the mirrored cornea of the contralateral eye.

RESULTS: The posterior surface of the 3D mould was highly accurate, with a mean absolute deviation of 0.28 mm, 0.53 mm, 0.37 mm and mean upper deviation of 0.53 mm, 0.86 mm, 1.17 mm, respectively, for the phantom, pig and human model. The intra- and interobserver repeatability and reproducibility of the 3D moulds and designs was good (<0.35 mm). The largest variation in the 3D geometric model was found at the junction of the 3D mould and mirrored cornea.

CONCLUSION: 3D design of an impression-free geometric model for an ocular prosthesis with low-dose CBCT is highly accurate in ex vivo anophthalmic socket models. This novel method is a critical step towards the manufacturing of 3D printed ocular prostheses and requires validation in anophthalmic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app