JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mapping of pathological change in chronic fatigue syndrome using the ratio of T1- and T2-weighted MRI scans.

Myalgic Encephalomyelitis or Chronic Fatigue Syndrome (ME/CFS) subjects suffer from a variety of cognitive complaints indicating that the central nervous system plays a role in its pathophysiology. Recently, the ratio T1w/T2w has been used to study changes in tissue myelin and/or iron levels in neurodegenerative diseases such as multiple sclerosis and schizophrenia. In this study, we applied the T1w/T2w method to detect changes in tissue microstructure in ME/CFS patients relative to healthy controls. We mapped the T1w/T2w signal intensity values in the whole brain for forty-five ME/CFS patients who met Fukuda criteria and twenty-seven healthy controls and applied both region- and voxel-based quantification. We also performed interaction-with-group regressions with clinical measures to test for T1w/T2w relationships that are abnormal in ME/CFS at the population level. Region-based analysis showed significantly elevated T1w/T2w values (increased myelin and/or iron) in ME/CFS in both white matter (WM) and subcortical grey matter. The voxel-based group comparison with sub-millimetre resolution voxels detected very significant clusters with increased T1w/T2w in ME/CFS, mostly in subcortical grey matter, but also in brainstem and projection WM tracts. No areas with decreased T1w/T2w were found in either analysis. ME/CFS T1w/T2w regressions with heart-rate variability, cognitive performance, respiration rate and physical well-being were abnormal in both gray and white matter foci. Our study demonstrates that the T1w/T2w approach is very sensitive and shows increases in myelin and/or iron in WM and basal ganglia in ME/CFS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app