JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Generators of human spinal somatosensory evoked potentials.

Somatosensory evoked potentials recorded over the spine with a noncephalic reference following posterior tibial nerve stimulation have several components. (1) A stationary, synapse-dependent, negative potential (N22) occurs synchronously with a positive potential, P22, recorded ventral to the spinal cord and is localized to the lumbar region overlying the lumbar root entry zone. The N22/P22 complex is attributed to activation of interneurons in the dorsal gray of the lumbar cord. (2) A traveling negative potential with a gradually increasing latency may be recorded from the sacral to the cervical region. Its short refractory period indicates that it is not dependent on transmission across a synapse. This activity is attributed to transmission of the afferent volley through the lumbosacral plexus, roots, and the dorsal columns of the spinal cord. (3) N29, a stationary, synapse-dependent negative potential, localizes to the rostral cervical spine and is attributed to activation of the gracile nucleus relay cells. Following stimulation of the median nerve or fingers, the waveforms recorded over the cervical spine with a noncephalic reference include (1) the proximal plexus volley, a traveling negative potential reflecting transmission through the proximal brachial plexus and roots; (2) the dorsal column volley (DCV), the latency of which gradually increases from the caudal to rostral cervical region (the DCV is attributed to transmission of the afferent volley through the dorsal columns of the cervical cord); and (3) N13, a stationary negative waveform, with a long refractory period consistent with its dependence on transmission across a synapse. Experimental animal and human studies indicate that the N13 waveform is dependent on activity of at least two generator sites, namely the dorsal gray of the cervical cord and the cuneate nucleus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app