Add like
Add dislike
Add to saved papers

Circulating Donor Heart Exosome Profiling Enables Noninvasive Detection of Antibody-mediated Rejection.

Background: Endomyocardial biopsy remains the gold standard for distinguishing types of immunologic injury-acute versus antibody-mediated rejection (AMR). Exosomes are tissue-specific extracellular microvesicles released by many cell types, including transplanted heart. Circulating transplant heart exosomes express donor-specific human leukocyte antigen (HLA) I molecules. As AMR is mediated by antibodies to donor HLAs, we proposed that complement deposition that occurs with AMR at tissue level would also occur on circulating donor heart exosomes.

Methods: Plasma exosomes in 4 patients were isolated by column chromatography and ultracentrifugation. Donor heart exosomes were purified using anti-donor HLA I antibody beads and complement C4d protein expression was assessed in this subset as marker for AMR.

Results: Three patients had no rejection episodes. Circulating donor heart exosomes showed troponin protein and mRNA expression at all follow-up time points. One patient developed AMR on day 14 endomyocardial biopsy that was treated with rituximab, IVIG/plasmapheresis. Time-specific detection of C4d protein was seen in donor heart exosome subset in this patient, which resolved with treatment. C4d was not seen in other 3 patients' donor exosomes.

Conclusions: Anti-donor HLA I specificity enables characterization of circulating donor heart exosomes in the clinical setting. Further characterization may open the window to noninvasively diagnose rejection type, such as AMR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app